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I. INTRODUCTION

For robots to autonomously operate in unstructured human
environments, they need to effectively manipulate novel ob-
jects while adapting to changes in environments and goals.
Semantic knowledge about objects, which represent relations
between object categories, locations, properties, and uses, can
help robots develop a mental model of objects and serve as
a structured prior that relates different tasks [19, 2, 14, 30].
Reasoning about the encoded knowledge further enables robots
to act according to what are implicitly represented rather than
the subbody of knowledge they have access to. For example,
from the observation that a bowl is made of ceramic and the
knowledge that the ceramic material is fragile, a robot can
perform deductive reasoning to infer that the bowl is fragile
and needs to be handled cautiously.

A crucial challenge for applying semantic reasoning to
robotic perception and manipulation is to connect symbolic
representations (e.g., knowledge graphs and textual facts) with
robots’ sensorimotor data (e.g., object point clouds, 6-dof
poses, spectroscopic reading of surfaces), also known as the
symbol grounding problem [16]. These two types of the data
have drastically different characteristics, in terms of modality,
granularity, and diversity. A useful connection between the
two types of data should not only be a direct mapping
from invariant features in the sensorimotor data to predefined
categorical representations but rather a deeper interaction that
reveals meaningful patterns of object properties and uses.

Prior work has demonstrated that symbolic knowledge
are useful for tasks involving high-level decision making,
including semantic navigation [32], human-robot interaction
[17], and task planning [11]. Large knowledge bases, such
as KnowRob [41] and RoboBrain [35], provide a unified
knowledge representation to store both concept taxonomy
and sensorimotor data; however, reasoning is lacking. Re-
cent methods from relational machine learning on knowledge
graphs [29] has enabled robots to model soft statistical patterns
[10] and perform multi-hop reasoning [21]. These techniques,
however, are often applied to high-level commonsense knowl-
edge sources such as ConceptNet [38] and WordNet [27],
without connection to sensorimotor knowledge.

Huge stride has been made on the development of structured
sensorimotor representation for integrating perception with
manipulation [37, 44]. Vision-based object representations,
such as affordance segmentation [12] and keypoint [25], enable
robots to generalize skills to novel instances of objects in the
same category. Understanding spatio-semantic relations (e.g.,

left, contain) has also shown to be useful for many applications
such as language-conditioned object retrieval [36, 28] and
moving object to achieve desired pairwise spatial relations
[31, 26]. Interactive perception [4] utilizes different sensor
modalities and exploratory actions to ground semantic object
properties (e.g., thin, rough and compressible) [7, 42], but the
inherent relations between object properties are not currently
exploited. In general, existing manipulation and perception
methods lack generalization to novel object categories, tasks,
and more complex real-world environments.

My research aims to combine high-level conceptual knowl-
edge and low-level skills by building semantic reasoning
frameworks that are capable of modeling higher-order seman-
tic relations grounded in robots’ sensorimotor data.

II. PREDICTING MULTIMODAL OBJECT PROPERTIES WITH
N-ARY RELATIONS

Prior work has encoded relations between object properties,
especially those that can be grounded in multimodal interactive
perception, primarily as binary relations between an object’s
class label and its semantic properties (e.g., (cup, is, fragile))
[10, 6, 46, 40, 35]. Such representation fails to integrate
closely with robot perception; for example, observing that
the cup is wet does not help to infer that the cup is more
likely to be located in sink than in cabinet. In our work
[22], we propose to use n-ary relations to model higher-order
interactions between object properties. However, collecting
semantically meaningful n-ary relations is challenging because
it requires various object properties to be conditioned on each
other. We obtain n-ary observations, each representing a set of
identified properties of an object instance within a particular
environmental context (e.g., a small silver metal cup that is wet
and in sink). We then mine generalizable patterns from n-ary
observations with a permutation-invariant transformer neural
network trained with an autoencodeing objective. Since the
learned model implicitly encodes statistical rules (e.g., paper is
light) that apply to any objects, the model can predict proper-
ties of novel objects in different environmental contexts given
different amounts of observed information. We validate on a
unique dataset we crowdsource that contains 15 multimodal
properties types and 200 total properties. Compared to the
prior state of the art Markov Logic Network [34], our model
obtains a 10% improvement in metric score while reducing
training and inference time by 150 times. We also apply our
model to a mobile manipulator, demonstrating the ability to
retrieve objects based on desired properties of objects (Fig. 1
leftmost) and actively detect object properties.
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Fig. 1. My work has enriched robots’ spatial understanding as well as semantic understanding of object properties and uses.

III. REASONING FOR CONTEXT-AWARE GRASPING.

We further apply higher-order reasoning of object properties
to the sensorimotor skill of task-oriented grasping from object
point clouds. In contrast to classic grasping which has focused
on getting hold of objects [3, 18, 24], task-oriented grasping
[9] resembles how humans grasp an object [8]; we do so
with a clear purpose of preparing the object to be used for
an intended manipulation task. For example, when we grasp a
cup for drinking from it, we use the handle though other stable
grasps exist. In our work [20], we reason about a broader range
of context for achieving purposeful grasping, including object
affordance, material, state, and task. To discover structure from
the high-dimensional, irregular, and multi-modal data associ-
ated with the varying context, we leverage semantic features as
an abstract intermediate representation, which can be acquired
with perception modules such as pixel-wise affordance detec-
tion [12] and material classification from spectroscopic data
[13]. Compared to existing methods that consider less context
or directly learn from low-level sensor data, our method
more effectively captures the complex reasoning patterns for
selecting suitable grasps and can generalize to a broader range
of novel situations with statistic significance. Deployed on a
mobile manipulator, the robot can extract and reason about
semantic information to execute semantically correct grasps
on everyday objects (Fig. 1 middle left).

IV. GENERALIZING TASK-ORIENTED GRASPING WITH A
KNOWLEDGE GRAPH

Besides reasoning about semantic representations of envi-
ronmental contexts, we also investigate whether a knowledge
graph encoding semantic relations between objects and tasks
(e.g., (cup, is a, container) and (tongs, used for, stirring))
can be used as a structured prior to generalize grasping
to novel objects and tasks, and skills beyond an object’s
prototypical use. To systematically study generalization, we
collect a dataset of 250K task-oriented grasps for 56 tasks and
191 objects (Fig. 1 middle right). We introduce a framework
based on a Graph Convolutional Network (GCN) that incor-
porates the knowledge graph into the end-to-end learning of
task-oriented grasping from object point clouds. We further
leverage word embeddings trained on large-scale linguistic
datasets and commonsense knowledge bases to initialize the
node embeddings in the GCN to provide additional prior
information. Our method shows a significant improvement of
12% and 3.5% on zero-shot generalization to novel tasks and
object categories, respectively, compared to baselines which do

not incorporate semantic knowledge. The method is deployed
to a 7-DOF Sawyer Robot for executing task-oriented stable
grasps for novel objects and tasks.

V. LEARNING MULTI-OBJECT SPATIAL STRUCTURE FOR
LANGUAGE-CONDITIONED REARRANGEMENT

Continuing the study of semantic and spatial relations,
we further examine multi-object spatio-semantic relations for
object rearrangement, which has many real-world applications
(e.g., setting the table and loading the dishwasher) and has
been recognized as a benchmark for embodied AI [1]. We
focus on the problem of semantic rearrangement, where a
robot must move a set of novel objects to form a spa-
tial structure that satisfies a high-level language instruction
(e.g., put the red mugs in a row, build a circle of the
wine bottles, and set the table). Compared to rearrangement
based on visual goals [33, 15, 43], language provides an
intuitive input modality for untrained users [39]; however,
it brings with it challenges in inferring the implied object
configuration directly from symbolic goal specifications. In
our work [23], we introduce a novel framework that uses
transformer encoders to jointly reason about both language
instructions as well as semantic and geometric features of
objects extracted from segmented point clouds. The encoders
can directly predict what objects to move and also provide a
multi-object context for an autoregressive transformer decoder
to predict target 6-DoF poses representing where the objects
should go and how they should be oriented. We validate on a
procedurally generated dataset for different structures (circles,
lines, towers, and table settings) using 335 3D object models
from ShapeNet [5]. We show through rigorous experiments
that our model enables robots to rearrange novel objects into
meaningful structures with multi-object relational constraints
inferred from the language command (Fig. 1 rightmost), also
more effectively than prior methods modeling pairwise spatial
relations.

VI. CONCLUSION

To address the challenges associated with operation in real-
world domains, robots must effectively generalize knowledge,
learn, and be transparent in their decision making. My re-
search has demonstrated that semantic knowledge grounded
in perception and manipulation provide robots (1) a unified
representation to identify the meaningful patterns of multi-
modal object properties and uses, (2) a structured prior to
help robots efficiently generalize sensorimotor skills to novel



object categories and tasks, and (3) intuitive input modalities
to receive instructions from human users.

This work, however, is a first step towards integrating
reasoning into the loop of perception and manipulation. First,
I plan to develop an active perception method that combine
n-ary relational knowledge with sequential decision making
to guide interactive perception of object properties. Second, I
am excited to extend the work of task-oriented grasping and
my previous research on affordance-based keypoint [45] to
learn a 3D semantic representation of objects, with the goal
of generalize manipulation skills to novel objects and tasks
under language guidance.
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